143 research outputs found

    Antibody responses to the merozoite surface protein-1 complex in cerebral malaria patients in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-1<sub>83</sub>, MSP-1<sub>30</sub>, MSP-1<sub>38 </sub>and MSP-1<sub>42</sub>), MSP-6<sub>36 </sub>and MSP-7<sub>22 </sub>and CM was investigated.</p> <p>Methods</p> <p>Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-6<sub>36 </sub>and MSP-7<sub>22 </sub>were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method.</p> <p>Results</p> <p>The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1<sub>f38</sub>, IgG1 levels to MSP-1<sub>d83</sub>, MSP-1<sub>19 </sub>and MSP-6<sub>36 </sub>and IgG3 levels to MSP-1<sub>f42 </sub>and MSP-7<sub>22 </sub>were observed in CM patients as compared to MM patients.</p> <p>Conclusion</p> <p>These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis.</p

    Geophysical Analysis of the Miocene-Pliocene Mangaa Formation for Better Exploration within the Parihaka 3D Survey; Taranaki Basin, New Zealand

    No full text
    The Taranaki Basin is the only known producing basin within New Zealand. Since the drilling of the first well in 1865, the Taranaki basin has remained relatively underexplored. The Arawa-1 well was drilled in 1992 using 2D seismic lines as a control. New Zealand has started an exploration initiative by publicly releasing all geological and geophysical information gathered on and offshore New Zealand. The gathered information includes the Parihaka 3D survey, which directly overlaps with the Arawa-1 well and original 2D lines. This study focused on the Miocene-Pliocene Mangaa Formation, which exhibited reservoir quality within the Arawa-1 well. Seismic attributes have been used to locate an area of interest within the Mangaa Formation. A Coherence attribute was useful for identifying geomorphological features as well as faults. An average energy volume was used to emphasize brighter amplitudes from background signatures and to define lateral boundaries of the reservoir. Upon mapping an area of interest within the Mangaa Formation, the amplitude anomalies were conformable to structural highs. Results were compared to an analog well, Karewa-1, where amplitude anomalies were relatively identical. Amplitude versus offset analysis was conducted for the amplitude anomaly within the Mangaa Formation and found a class 4 anomaly. The interpreter performed fluid replacement modeling with the assumption of 100% gas, derived from the analog, Karewa-1. The interpreter compared the resulting model to the observed trends inside and outside of the amplitude anomaly. The gas model signature resembled that of the amplitudes inside of the amplitude anomaly, and the amplitude signature of the original water saturation resembled that of the amplitudes outside of the anomaly. The results allow the interpreter to use the correlation of amplitude signatures and fluids in place to assist in de-risking prospect potential

    A chimeric transactivator allows tetracycline-responsive gene expression in whole plants

    No full text
    The chimeric transcriptional activator tTA, a fusion between the Tn10 encoded Tet repressor and the activation domain of the Herpes simplex virion protein VP16, was stably expressed in transgenic tobacco plants. It stimulates transcription of the beta-glucuronidase (gus) gene from an artificial promoter consisting of 7 tet operators and a TATA-box. Tetracycline, which interferes with binding of tTA to operator DNA, reduces gus expression over several orders of magnitude. This stringency of regulation suggests that the system can be used to construct transgenic plants encoding a potentially lethal gene product. Furthermore, the specific and fast inactivation of tTA allows study of the stability of RNAs and proteins
    • …
    corecore